JSForce: A Forced Execution Engine for Malicious JavaScript Detection

نویسندگان

  • Xunchao Hu
  • Yao Cheng
  • Yue Duan
  • Andrew Henderson
  • Heng Yin
چکیده

The drastic increase of JavaScript exploitation attacks has led to a strong interest in developing techniques to enable malicious JavaScript analysis. Existing analysis techniques fall into two general categories: static analysis and dynamic analysis. Static analysis tends to produce inaccurate results (both false positive and false negative) and is vulnerable to a wide series of obfuscation techniques. Thus, dynamic analysis is constantly gaining popularity for exposing the typical features of malicious JavaScript. However, existing dynamic analysis techniques possess limitations such as limited code coverage and incomplete environment setup, leaving a broad attack surface for evading the detection. To overcome these limitations, we present the design and implementation of a novel JavaScript forced execution engine named JSForce which drives an arbitrary JavaScript snippet to execute along different paths without any input or environment setup. We evaluate JSForce using 220,587 HTML and 23,509 PDF realworld samples. Experimental results show that by adopting our forced execution engine, the malicious JavaScript detection rate can be substantially boosted by 206.29% using same detection policy without any noticeable false positive increase. We also make JSForce publicly available as an online service and will release the source code to the security community upon the acceptance for publication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J-Force: Forced Execution on JavaScript

Web-based malware equipped with stealthy cloaking and obfuscation techniques is becoming more sophisticated nowadays. In this paper, we propose J-FORCE, a crash-free forced JavaScript execution engine to systematically explore possible execution paths and reveal malicious behaviors in such malware. In particular, JFORCE records branch outcomes and mutates them for further explorations. J-FORCE ...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

Malicious JavaScript Detection by Features Extraction

In recent years, JavaScript-based attacks have become one of the most common and successful types of attack. Existing techniques for detecting malicious JavaScripts could fail for different reasons. Some techniques are tailored on specific kinds of attacks, and are ineffective for others. Some other techniques require costly computational resources to be implemented. Other techniques could be c...

متن کامل

Detection and Analysis of Shellcode in Malicious Documents

A Shellcode is a code snippet used as a payload in exploiting software vulnerability. In recent trends of attack, shellcode embedded in documents are one of the widely used vectors for targeted attacks. The significant aspect of these documents are dynamic content, URL access and can be camouflaged easily. Most of the security mechanisms are not accoutered to deal with these weaponised document...

متن کامل

JSGuard: Shellcode Detection in JavaScript

JavaScript (JS) based shellcode injections are among the most dangerous attacks to computer systems. Existing approaches have various limitations in detecting such attacks. In this paper, we propose a new detection methodology that overcomes these limitations by fully using JS code execution environment information. We leverage this information and create a virtual execution environment where s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1701.07860  شماره 

صفحات  -

تاریخ انتشار 2017